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Abstract. A complete description of Lie symmetries is obtained for multidimensional semilinear
systems of two reaction–diffusion equations. Moreover, a variety of Lie’s ansätze and exact
solutions of some particular reaction–diffusion systems, of a type that arises in mathematical
biology for example, are constructed.

1. Introduction

In the present paper we shall consider nonlinear reaction–diffusion systems of the form

λ1Ut = 1U + F(U, V )

λ2Vt = 1V +G(U, V )
(1)

whereF andG are arbitrary smooth functions,U = U(t, x), V = V (t, x) are unknown
functions ofn + 1 variablest , x = (x1, . . . , xn), 1 is the Laplacian and the subscriptt on
functionsU andV denotes differentiation with respect to this variable.

The nonlinear system (1) generalizes many well known nonlinear second-order models and
is used to describe various processes in physics [1], chemistry [2] and biology [3]. Nowadays
systems of the form (1) are widely studied. There are many papers devoted to the investigation
of existence and uniqueness problems, asymptotic behaviour of solutions and so on (see, e.g.,
[3, 4] and papers cited therein). On the other hand, to our knowledge there are only a few
papers devoted to the search for Lie symmetries and exact solutions of systems of the form (1)
(see [5–8]).

In a particular case, reaction–diffusion systems that are invariant with respect to the Galilei
algebra and its extensions were described in [5, 8]. It was found that only systems of the form

λ1Ut = 1U +Uf (ω) ω = Uλ2V −λ1

λ2Vt = 1V + Vg(ω)
(2)
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wheref andg are arbitrary smooth functions on the variableω, are invariant under the Galilei
algebraAG(1.n) with the following representation:

Pt = ∂

∂t
Pa = ∂

∂xa
Jab = xaPb − xbPa

Qλ = λ1U
∂

∂U
+ λ2V

∂

∂V
Ga = tPa − 1

2xaQλ.

(3)

It should be stressed that although the technique of the Lie method is well known (see, e.g.,
[9–12]), it is a non-trivial problem to provide a complete description of the Lie symmetries
of differential equations or systems containingarbitrary functions. For instance, Lie had
calculated the maximal invariance algebra of the classical(1 + 1)-dimensional diffusion
equation

Ut = Uxx (4)

as far back as 1881 [13]. Nevertheless, the full classification of Lie symmetries for the single
nonlinear reaction–diffusion equation

Ut = [A(U)Ux ]x +C(U) (5)

was only calculated in 1982 [14], i.e. 100 years later! Note that in the recently published paper
[15] the full classification of Lie symmetries of the nonlinear reaction–diffusion–convection
equation

Ut = [A(U)Ux ]x +B(U)Ux +C(U) (6)

whereA(U), B(U) andC(U) are arbitrary smooth functions, has been determined.
Having in mind acomplete descriptionof the Lie symmetry of system (1), we now

summarize the main results of this paper.
In section 2, the classical Lie scheme is applied to find all possible Lie symmetries which

the system (1) can admit. The main results of this section are presented in tables 1–5. Note that
we present the full classification only for the caseλ1 6= λ2 with λ1, for example, non-vanishing.
It turns out that the caseλ1 = λ2 is very special and we are going to devote to this case the
second part of this work.

In section 3, the(1 + 1)-dimensional reaction–diffusion system, preserving the Lie
symmetry of the linear diffusion equation, namely

λ1Ut = Uxx + β1U(U
−λ2V λ1)4/(λ1−λ2)

λ2Vt = Vxx + β2V (U
−λ2V λ1)4/(λ1−λ2)

(7)

is considered in detail. All non-equivalent Lie ansätze are presented, together with formulae
for the multiplication of solutions and examples of exact solutions.

2. Lie symmetries of system (1)

It is easily checked that the system (1) is invariant under the operatorsPa, Jab andPt (see
(3)) for arbitrary functionsF andG. The operatorsPa andJab form the well known Euclid
algebraAE(n). Its extension by the operatorPt we will denote as theAE(1.n) algebra.
Following [15], this algebra is called thetrivial Lie algebraof the system (1). Thus, we aim to
find all pairs of functions(F,G) that lead to extensions of the trivial Lie algebra for systems
of the form (1). Note that we consider onlynonlinearsystems, particularly because linear
equations are amenable to numerous classical methods (the Fourier method, the method of
Laplace transformation and so on).
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Now let us formulate a theorem which gives complete information on the classical
symmetry of the system (1).

Theorem 1. All possible maximal algebras of invariance (MAI) of the system (1) for any fixed
pair of functionsF,G andλ1 6= λ2 are presented in tables 1–5. Any other system of the form
(1) with non-trivial Lie symmetry is reduced by a local substitution to one of those given in
tables.

Proof of theorem 1. This proof is based on the classical Lie scheme (see, e.g., [9–12]) and
is very cumbersome because the system (1) contains two arbitrary functions of two variables.
Here we give only an outline of how the proof proceeds. According to the Lie approach, the
system (1) is considered as a manifold(S1, S2)

S1 ≡ λ1Ut −1U − F(U, V ) = 0

S2 ≡ λ2Vt −1V −G(U, V ) = 0
(8)

in the space of the following variables:

t, x, U, V,Ut , Vt , U1, . . . , Un, V1, . . . , Vn, U11, . . . , Unn, V11, . . . , Vnn

where subscripts 1, . . . , n to the functionsU andV denote differentiation with respect to the
variablesx1, . . . , xn.

System (1) is invariant under the transformations generated by the infinitesimal operator

X = ξ0(t, x, U, V )∂t + ξa(t, x, U, V )∂xa + ηU(t, x, U, V )∂U + ηV (t, x, U, V )∂V (9)

when the following invariance conditions are satisfied:

X
11
S1 ≡ X

11
(λ1Ut −1U − F(U, V ))

∣∣∣ S1=0
S2=0

= 0

X
11
S2 ≡ X

11
(λ2Vt −1V −G(U, V ))

∣∣∣ S1=0
S2=0

= 0.
(10)

The operatorX
11

is the second prolongation of the operatorX, i.e.

X
11
= X + ρUt

∂

∂Ut
+ ρVt

∂

∂Vt
+ ρUa

∂

∂Ua
+ ρVa

∂

∂Va
+ σUab

∂

∂Uab
+ σVab

∂

∂Vab
(11)

where the coefficientsρ andσ with relevant subscripts are calculated by well known formulae
(see, e.g., [12]) and summation is assumed from 1 ton over the repeated indicesa, b.
Substituting (11) into (10), we can split this relation into separate parts for the derivatives

Ut, Vt , U1, . . . , Un, V1, . . . , Vn, U11, . . . , Unn, V11, . . . , Vnn.

Finally, after the relevant calculations, we obtain the following system for the coefficients
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ξ0, ξ a, ηU , ηV of the operatorX:

∂ξ0

∂xa
= ∂ξ0

∂U
= ∂ξ0

∂V
= 0 a = 1, . . . , n

∂ξa

∂U
= ∂ξa

∂V
= 0

∂ξb

∂xa
+
∂ξa

∂xb
= 0 a, b = 1, . . . , n a 6= b

∂ξ0

∂t
= 2

∂ξa

∂xa
a = 1, . . . , n

2
∂2ηU

∂xa∂U
= 1ξa − λ1

∂ξa

∂t
a = 1, . . . , n

2
∂2ηV

∂xa∂V
= 1ξa − λ2

∂ξa

∂t
a = 1, . . . , n

ηU = E1(t, x)U + q1(t)V + P 1(t, x)

ηV = E2(t, x)V + q2(t)U + P 2(t, x);

(12)

λ1
∂ηU

∂V
= λ2

∂ηU

∂V

λ1
∂ηV

∂U
= λ2

∂ηV

∂U
;

(13)

λ1
∂ηU

∂t
−1ηU + F

(
∂ηU

∂U
− ∂ξ

0

∂t

)
+G

∂ηU

∂V
= ηU ∂F

∂U
+ ηV

∂F

∂V

λ2
∂ηV

∂t
−1ηV +G

(
∂ηV

∂V
− ∂ξ

0

∂t

)
+ F

∂ηV

∂U
= ηU ∂G

∂U
+ ηV

∂G

∂V

(14)

whereEk(t, x), qk(t), P k(t, x), k = 1, 2 are arbitrary smooth functions.
One can see that the subsystem (12) is an overdetermined one and it is possible to construct

its general solution, namely:

ξ0 = 2A(t)

ξa = cabxb + Ȧ(t)xa + ga(t) a, b = 1, . . . , n a 6= b
ηU = − 1

2λ1
(

1
2|x|2Ä(t) + ġa(t)xa

)
U + r1(t)U + q1(t)V + P 1(t, x)

ηV = − 1
2λ2

(
1
2|x|2Ä(t) + ġa(t)xa

)
V + r2(t)V + q2(t)U + P 2(t, x)

(15)

whereA(t),ga(t),a = 1, . . . , n, rk(t),qk(t),P k(t, x), k = 1, 2 are arbitrary smooth functions,
cab+cba = 0,cab ∈ R, and the dots over the functions denote differentiation with respect to the
variablet . Taking into account (15), we can consider equations (13) and (14) as classification
equations to find the pairs of(F,G) for which the system (1) has a non-trivial Lie symmetry.

It can be seen that there are three main cases which lead to essentially different types of
Lie symmetry of the system (1), namely:

(a) λ1 6= λ2, λ1λ2 6= 0;
(b) λ1λ2 = 0;
(c) λ1 = λ2.

In the first case, it follows from (13) thatq1 = q2 = 0 and then the subsystem (14) is
non-coupled. Moreover, both equations of this subsystem have the same structure. In the
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second case, it follows again thatq1 andq2 vanish. Without losing generality, we can assume
λ1 = λ 6= 0, λ2 = 0 and then the second equation of (14) is simpler in structure than the
first one. The caseλ1 = λ2 = 0 is not considered here because then the evolution system
degenerates into an elliptic system. In the third case, equations (13) are satisfied by arbitrary
functionsq1 andq2, so that the subsystem (14) is coupled. This case will be considered in a
subsequent paper.

Case (a). This is the most general and interesting case. Taking into account (15), one sees
that the most non-trivial symmetry can occur when

E ≡ 1
2|x|2Ä(t) + ġa(t)xa 6= 0. (16)

Substituting coefficients (15) into (14) and solving the system obtained using the restriction
(16), we find all possible extensions of the trivial Lie algebra, listed in table 1. Note that we
have shown only local non-equivalent systems. The corresponding local substitutions have the
form

U → c1 exp(c3t)U + c10

V → c2 exp(c4t)V + c20

(17)

where the coefficientsc with subscripts are determined by the form of the system in question.
If the restriction (16) is not valid, i.e.E = 0, then (15) takes the form

ξ0 = 2A1t + d0

ξa = cabxb +A1xa + da a, b = 1, . . . , n a 6= b
ηU = r1(t)U + P 1(t, x)

ηV = r2(t)V + P 2(t, x)

(18)

whereA1, d0, d1, . . . , dn are arbitrary parameters. Again one notes that the widest symmetry
occurs in the caseA1 6= 0. In this case all systems of the form (1) that are invariant under scaling
transformations with respect to the independent variables (of the formt ′ = ε2t , x ′a = εxa,
a = 1, . . . , n, ε ∈ R) can be described. These results are summarized in table 3. Note that
two additional cases (numbers 6 and 12), that belong only to case (b), are also listed in table 3.
The set of local substitutions that reduce any system of the form (1) with the above-mentioned
symmetry to one of the cases of table 3 has the form

U → c1 exp(c3t)U + c5|x|2 + c7t + c10

V → c2 exp(c4t)V + c6|x|2 + c8t + c20.
(19)

Finally, if A1 = 0 then the trivial Lie algebraAE(1.n) of the system (1) can be extended
only by operators of the form

X∞1 = P 1(t, x)∂U X∞2 = P 2(t, x)∂V

I∞1 = T 1(t)U∂U I∞2 = T 2(t)V ∂V
(20)

where T k(t), P k(t, x), k = 1, 2 are some functions or constants, and by their linear
combinations. All possible functions have been found and the results are summarized in
tables 4 and 5. Again, additional cases (see numbers 3–6 and 12, 13 in table 4 and numbers 2,
4 and 5 in table 5) that belong only to case (b) are also listed in tables 4 and 5. The set of local
substitutions that reduce any system of the form (1) with symmetry (20) to one of the cases of
tables 4 and 5 again has the form (19).
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Table 1. Galilei-invariant and pseudo-Galilean-invariant systems of the form (1) atλk 6= 0, k =
1, 2.

Systems Restrictions Basic operators of MAI

1 λ1Ut = 1U +Uf (ω) ω = U−λ2V λ1 AE(1.n),Qλ = λ1U∂U + λ2V ∂V

λ2Vt = 1V + Vg(ω) Ga = tPa − 1
2xaQλ

2 λ1Ut = 1U + β1Uω
α α 6= 0 AE(1.n),Qλ,Ga

λ2Vt = 1V + β2Vω
α β1 6= 0 D = 2tPt + xaPa − 2

λ1α
V ∂V

3 λ1Ut = 1U + β1U [U−λ2V λ1]γn γn = 4

n(λ1 − λ2)
AE(1.n),Qλ,Ga

λ2Vt = 1V + β2V [U−λ2V λ1]γn β1 6= 0 D = 2tPt + xaPa − In
5 = t2Pt + txaPa − 1

4 |x|2Qλ − tIn
4 λ1Ut = 1U +U(β1 + λ2

1β0 logω) β0 6= 0 AE(1.n),Qλ,Ga

λ2Vt = 1V + V (β2 + λ2
2β0 logω) Y = 2

n
In + β0(λ1 − λ2)tQλ

5 λ1Ut = 1U +U(β1 + β10 logω) β20 6= 0 AE(1.n),Qλ,Ga

λ2Vt = 1V + V (β2 + β20 logω) β10λ
2
2 6= β20λ

2
1 Qβ = Qβ exp

(
β20λ

2
1 − β10λ

2
2

λ1λ2
t

)
6 λ1Ut = 1U +U(λ1β logU + f (ω)) β 6= 0 AE(1.n),Qλ = exp(βt)Qλ

λ2Vt = 1V + V (λ2β logV + g(ω)) ω = U−λ2V λ1 Ga = exp(βt)Pa − 1
2βxaQλ

7 λ1Ut = 1U β 6= 0 AE(1.n),Qλ,Ga
+U(β1 + λ1β logU + β10 logω)

λ2Vt = 1V βλ1λ2 = β10λ
2
2 − β20λ

2
1 Qβ = β10λ2U∂U + β20λ1V ∂V

+V (β2 + λ2β logV + β20 logω)

8 λ1Ut = 1U β 6= 0 AE(1.n),Qλ,Ga
+U(β1 + λ1β logU + β10 logω) β10λ

2
2 6= β20λ

2
1

λ2Vt = 1V β10λ
2
2 − β20λ

2
1 6= βλ1λ2 Q1

β = exp(βt)Qβ
+V (β2 + λ2β logV + β20 logω)

9 λ1Ut = 1U ββ0 6= 0 AE(1.n),Qλ,Ga
+U(β1 + λ1β logU + λ2

1β0 logω)

λ2Vt = 1V Y = exp(βt)
2

n
In + β0(λ1 − λ2)tQλ

+V (β2 + λ2β logV + λ2
2β0 logω)

Remark 1. In table 1, the following designation is introduced:In = 1
2n(U∂U + V ∂V ).

All possible systems that have non-trivial Lie symmetry have now been described in
case (a).

Case (b). This case is more cumbersome than case (a). Nevertheless, it is possible to make
use of the results of the investigation of case (a). It turns out that forE = 0 most of the pairs of
nonlinearities(F,G) that lead to non-trivial Lie symmetries can be obtained from the relevant
cases of tables 3–5, if there one formally putsλ2 = 0. On the other hand, cases 6 and 12 in
table 3, 3–6 and 12–13 in table 4, and 2, 4 and 5 in table 5 arise only whenλ2 = 0.

When the restriction (16) holds, the full classification gives a set of new nonlinearities
(F,G) which lead to non-trivial Lie symmetries. We have found 16 relevant cases, which are
listed in table 2. Note that only some of them can be obtained formally from the corresponding
cases in table 1.
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The set of local substitutions that reduce any system of the form (1), with Lie operator(s)
satisfying (16), to one of the cases of table 2 has the form

U → c1 exp(c3t)U + c10

V → c2V + c4t + c5t |x|2 + c20.
(21)

The sketch of the proof is now completed. �

Remark 2. In tables 1–5,f (ω), g(ω) andT (t) are arbitrary smooth functions, whileP1(t, x),

P2(t, x), Pβ1(t, x), Pβ2(t, x), P0(t, x), R(x) andR0(x) are arbitrary solutions of the linear
equations

λ1Pt = 1P
λ2Pt = 1P
λ1Pt = 1P + β1P

0= 1P + β2P

0= 1P
1R = λ2β1− λ1β2

λ1− λ2
R

1R0 = 0

(22)

respectively.

Remark 3. A number of the cases that are noted as special with respect to their symmetry
properties also arise in applications. Power-law nonlinearities (such as those arising in
table 1, cases 2 and 3 and table 2, cases 2 and 3) are frequently adopted in chemical
reaction modelling, for example, while combinations of exponentials and power laws (akin
to those in table 2, cases 5 and 9 and table 3, case 9) arise when the effects of variations
in temperature on reaction rates are accounted for, such as in the modelling of combustion
processes.

It is worth commenting on systems and Lie algebras listed in table 1. It turns out that,
in contrast to the scalar case, there are many Galilei-invariant systems of the form (1) (see
case 1 in table 1). Cases 2 and 3 of table 1 are natural continuations of case 1, because
the extended Galilei algebraAG1(1.n) and the generalized Galilei algebraAG2(1.n) are
known to be standard extensions of the classical Galilei algebraAG(1.n) (for details see
[12, 16]). Moreover, the system (1) is invariant with respect to theAG2(1.n) algebra only
in the case of a particular power nonlinearity that depends on the values ofλ1, λ2 andn.
Cases 4 and 5 represent two new extensions of the Galilean algebra by the operatorsY andQβ ,
respectively. Both extensions are different from theAG1(1.n) algebra because they contain
the commutative relations [Pt , Y ] = β0(λ1−λ2)Qλ and [Pt ,Qβ ] = (β20λ

2
1−β10λ

2
2)Qβ

/
λ1λ2,

respectively.
In contrast to cases 1–5, case 6 has a direct analogue among single nonlinear reaction–

diffusion equations. Indeed, according to [14],

Ut = 1U + β0U logU β0 6= 0
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Table 2. Galilei-invariant and pseudo-Galilean-invariant systems of the form (1) atλ ≡ λ1 6=
0, λ2 = 0.

Systems Restrictions Basic operators of MAI

1 λUt = 1U +Uf (V ) AE(1.n),Q = U∂U
0= 1V + g(V ) Ga = tPa − 1

2λxaQ

2 λUt = 1U AE(1.n),Q,Ga
0= 1V + g(V ) X∞1 = P1(t, x)∂U

3 λUt = 1U β2γ 6= 0 AE(1.n),Q,Ga,X∞1
0= 1V + β2V

1+γ γ 6= −1 D1 = 2tPt + xaPa − 2

γ
V PV

51 = t2Pt + txaPa

−( 1
4λ|x|2 + 1

2nt)U∂U −
2

γ
tV ∂V

4 λUt = 1U + β1UV
γ γβ1β2 6= 0 AE(1.n),Q,Ga

0= 1V + β2V
1+γ D1,51

5 λUt = 1U + β1U exp(γ V ) γβ1 6= 0 AE(1.n),Q,Ga

0= 1V + β2 exp(γ V ) D2 = 2tPt + xaPa − 2

γ
PV

52 = t2Pt + txaPa

−( 1
4λ|x|2 + 1

2nt)U∂U −
2

γ
t∂V

6 λUt = 1U β2γ 6= 0 AE(1.n),Q,Ga
0= 1V + β2 exp(γ V ) D2,52, X

∞
1

7 λUt = 1U + γU logV γ 6= 0 AE(1.n),Q,Ga

0= 1V + β2V Y∞ =
(
γ

∫
T (t) dt

)
U∂U + λT (t)V ∂V

8 λUt = 1U +Uf (ω) α 6= 0 AE(1.n),Qα = U∂U − α∂V
0= 1V + g(ω) ω = Uα expV Gαa = tPa − 1

2λxaQα

9 λUt = 1U + β1U
α+1 expV αβ2 6= 0 AE(1.n),Qα,G

α
a

0= 1V + β2U
α expV D0 = 2tPt + xaPa − 2∂V

10 λUt = 1U α2β2 6= 0 AE(1.n),Qα,G
α
a atα = α2/β2

0= 1V + α2 logU + β2V X∞β2
= Pβ2(t, x)∂V

11 λUt = 1U α2 6= 0 AE(1.n),X∞0 = P0(t, x)∂V

0= 1V + α2 logU Qesp = U∂U − α2

2n
|x|2∂V

G
esp
a = tPa − 1

2λxa

(
Qesp +

α2

3n
x2
a ∂V

)
D = 2tPt + xaPa + 2V ∂V
5esp = tD − t2Pt − ( 1

4λ|x|2 + 1
2nt)U∂U

+

(
λα2

16(n + 2)
(|x|2)2 +

α2t

4
|x|2

)
∂V

12 λUt = 1U + γU logU +Uf (V ) γ 6= 0 AE(1.n),Q = exp
(γ
λ
t
)
U∂U

0= 1V + g(V ) Ga = exp
(γ
λ
t
)
Pa − 1

2γ xaQ

13 λUt = 1U + γU logU γ 6= 0 AE(1.n),Q,Ga
0= 1V + β2V I∞ = T (t)V ∂V ,X∞β2

= Pβ2(t, x)∂V

14 λUt = 1U +U(γ logU + β10 logV ) γβ10 6= 0 AE(1.n),Q,Ga

0= 1V + β2V Y∞ = exp

(
β10

λ
t

)
Y∞
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Table 2. Continued.

Systems Restrictions Basic operators of MAI

15 λUt = 1U +U(γ logU + f (ω)) γ α 6= 0 AE(1.n),Qα = exp
(γ
λ
t
)
(U∂U − α∂V )

0= 1V + g(ω) ω = Uα expV Gαa = exp
(γ
λ
t
)
Pa − 1

2γ xaQ
α

16 λUt = 1U + γU logU α2β2γ 6= 0 AE(1.n),X∞β2

0= 1V + α2 logU + β2V Qα,Gαa atα = α2

β2

is invariant with respect to theAG(1.n) algebra with basic operators

Pt = ∂

∂t
Pa = ∂

∂xa
Jab = xaPb − xbPa

Q = exp(β0t)U∂U Ga = exp(β0t)Pa − 1
2β0xaQ.

(23)

Here we call this algebra the pseudo-Galilean algebra. Note that theAG(1.n) algebra is
different from the Galilei algebra because it contains the commutative relations [Pt ,Q] = β0Q
and [Pt ,Ga] = β0Ga. Finally, cases 7–9 of table 1 are natural continuations of case 6, because
they represent three new extensions of the pseudo-Galilean algebra.

3. Lie ans̈atze and solutions of the nonlinear reaction–diffusion system (7)

Consider the nonlinear reaction–diffusion system (see table 1, case 3)

λ1Ut = 1U + β1U
1−λ2γnV λ1γn

λ2Vt = 1V + β2V
1+λ1γnU−λ2γn

(24)

whereγn = 4/(n(λ1 − λ2)), λ1 6= λ2. It preserves theAG2(1.n) symmetry of the linear
diffusion system

λ1Ut = 1U
λ2Vt = 1V.

(25)

It should be stressed that this is a non-trivial result since there is no scalar nonlinear
generalization (5) of the linear equation (4) which preserves itsAG2(1.1) symmetry.

In this section we shall deal with the(1 + 1)-dimensional version of the system (24), i.e.
(7). This system withλ1 − λ2 < 0 can be considered as a limiting case of a model used to
describe a biological pattern arising inhydra[17, 18], namely

λ1Ut = Uxx + β1U(U
α2V −α1 − d1)

λ2Vt = Vxx + β2V (U
α4V −α3 − d2)

(26)

where the coefficients are some non-negative parameters. Note that in the caseα2/α1 =
α4/α3 = λ2/λ1, the system (26) is invariant with respect to the Galilei algebraAG(1.n) (see
table 1, case 1). In the case of the additional restrictionsd1 = d2 = 0, α2 = α4, α1 = α3, it
has theAG1(1.n) symmetry (see table 1, case 2).

Thus, it seems reasonable to construct Lie ansätze and to seek exact solutions of the
nonlinear system (7). With this in mind, consider its Lie symmetry generated by the basic
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Table 3. Scale-invariant systems of the form (1).

Systems Restrictions Basic operators of MAI

1 λ1Ut = 1U +U1−α0f (ω) α0 6= 0 AE(1.n),D1 = 2t∂t + xa∂a

λ2Vt = 1V + VU−α0g(ω) ω = U−γ V +
2

α0
(U∂U + γV ∂V )

2 λ1Ut = 1U + β1U
1−α0 α0β1β2 6= 0 AE(1.n),D1

λ2Vt = 1V + β2U
γ−α0 X∞2 = P2(t, x)∂V

3 λ1Ut = 1U + β1U
1−α0V α1 α0α1β1 6= 0 AE(1.n)

λ2Vt = 1V + β2U
−α0V 1+α1 α0λ1 6= α1λ2 D10 = 2t∂t + xa∂a +

2

α0
U∂U

Qα = α1U∂U + α0V ∂V

4 λ1Ut = 1U α1β2 6= 0 AE(1.n),D10, X
∞
2

λ2Vt = 1V + β2U
−α0 α0 6= 0;−1;−λ2

λ1
Qα0 = −U∂U + α0V ∂V ,

5 λ1Ut = 1U + β1U
1−α0 λ2β1 6= 0 AE(1.n),D10

λ2Vt = 1V α0 6= 0; 1 I = V ∂V ,X∞2
6 λ1Ut = 1U + β1U

1−α0 λ1β1 6= 0 AE(1.n),D10, I
∞ = T (t)V ∂V ,

0= 1V α0 = 0; 1 X∞0 = P0(t, x)∂V

7 λ1Ut = 1U + exp(−γ0U)f (ω) γ0 6= 0 AE(1.n),D2 = 2t∂t + xa∂a

λ2Vt = 1V + V exp(−γ0U)g(ω) ω = V

exp(γU)
+

2

γ0
(∂U + γV ∂V )

8 λ1Ut = 1U + β1 exp(−γ0U) γ0β1β2 6= 0 AE(1.n),D2

λ2Vt = 1V + β2 exp((γ − γ0)U) X∞2
9 λ1Ut = 1U + β1V

α1 exp(−γ0U) α1γ0β1 6= 0 AE(1.n),Qγ = α1∂U + γ0V ∂V

λ2Vt = 1V + β2V
1+α1 exp(−γ0U) D20 = 2t∂t + xa∂a +

2

γ0
∂U

10 λ1Ut = 1U λ1 6= 0 AE(1.n),D20, X
∞
2

λ2Vt = 1V + β2 exp(−γ0U) γ0β2 6= 0 Qγ0 = −∂U + γ0V ∂V

11 λ1Ut = 1U + β1 exp(−γ0U) λ1λ2 6= 0 AE(1.n),D20

λ2Vt = 1V γ0β1 6= 0 I = V ∂V ,X∞2
12 λ1Ut = 1U + β1 exp(−γ0U) λ1β1γ0 6= 0 AE(1.n),D20, I

∞ = T (t)V ∂V
0= 1V X∞0 = P0(t, x)∂V

13 λ1Ut = 1U + exp(−γ0U)f (ω) λ1γ0 6= 0, AE(1.n),D3 = 2t∂t + xa∂a

λ2Vt = 1V + exp(−γ0U)g(ω) ω = γU − V +
2

γ0
(∂U + γ ∂V )

14 λ1Ut = 1U + β1 exp(γ1V − γ0U) γ0γ1 6= 0 AE(1.n),D20

λ2Vt = 1V + β2 exp(γ1V − γ0U) λ1β2 6= 0 Q∞γ = R0(x)(γ1∂U + γ0∂V )

15 λ1Ut = 1U + β1 λ1β2 6= 0 AE(1.n),Q∞γ

λ2Vt = 1V + β2 exp(γ1V − γ0U) γ1γ2 6= 0 Desp = 2t∂t + xa∂a − 2

γ1
∂V

+
2β1

λ1 − λ2

(
t +

λ2|x|2
2n

)(
∂U +

γ0

γ1
∂V

)
16 λ1Ut = 1U + β1 exp(−γ0U) γ0β1β2 6= 0 AE(1.n),X∞2

λ2Vt = 1V + β2U Desp = 2t∂t + xa∂a +
2

γ0
∂U

+2

(
V − β2|x|2

2γ0n

)
∂V

operators

Pt = ∂t Px = ∂x Qλ = λ1U∂U + λ2V ∂V

Gx = tPx − 1
2xQλ D = 2tPt + xPx − 1

2(U∂U + V ∂V )

5 = t2Pt + txaPa − 1
4|x|2Qλ − 1

2 t (U∂U + V ∂V ).

(27)
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Table 4. Other systems of the form (1).

Systems Restrictions Basic operators of MAI

1 λ1Ut = 1U +Uf (ω) γ 6= 0; λ2/λ1 AE(1.n)
λ2Vt = 1V + Vg(ω) ω = U−γ V Qγ = U∂U + γV ∂V

2 λ1Ut = 1U +Uf (ω) + β10U logU λ1/β10 = λ2/β20 AE(1.n)

λ2Vt = 1V + Vg(ω) + β20V logV λ2β20 6= 0 Qγ = exp

(
β10

λ1
t

)
(U∂U + γV ∂V )

3 λ1Ut = 1U +Uf (ω) + β10U logU λ1β10 6= 0 AE(1.n),Qγ
0= 1V + Vg(ω)

4 λ1Ut = 1U + β1U + β10U logU λ1β2 6= 0 AE(1.n),Qγ
0= 1V + β2U

γ γ 6= 0; 1 X∞0 = P0(t, x)∂V

5 λ1Ut = 1U + β1U + β10U logU λ1β10β21 6= 0 AE(1.n),Qγ , γ = 1
0= 1V + β2V + β21U X∞β2

= Pβ2(t, x)∂V

6 λ1Ut = 1U + β1U + β10U logU λ1β10 6= 0 AE(1.n),Qγ , γ = 1
0= 1V X∞0 , I

∞ = T (t)V ∂V
7 λ1Ut = 1U + f (U) λ2β20 6= 0 AE(1.n),Q2 = exp

(
β20

λ2
t

)
V ∂V

λ2Vt = 1V + Vg(U) + β20V logV

8 λ1Ut = 1U + β1U + β10U logU λ1β10 6= 0 AE(1.n)

λ2Vt = 1V + β2V + β20V logV λ2β20 6= 0 Q1 = exp

(
β10

λ1
t

)
U∂U ,Q2

9 λ1Ut = 1U + β1U + β10U logU λ1λ2β10 6= 0 AE(1.n),Q1, I = V ∂V
λ2Vt = 1V X∞2 = P2(t, x)∂V

10 λ1Ut = 1U + f (U) λ2 6= 0 AE(1.n), I
λ2Vt = 1V + Vg(U)

11 λ1Ut = 1U + f (U) λ2 6= 0 AE(1.n), I,X∞2
λ2Vt = 1V

12 λ1Ut = 1U + f (U) λ1 6= 0 AE(1.n), I∞ = T (t)V ∂V
0= 1V X∞0 = P0(t, x)∂V ,

13 λ1Ut = 1U + f (U) λ1 6= 0 AE(1.n), I∞

0= 1V + Vg(U)

According to the general procedure it is necessary to solve the Lagrange system

dt

ξ0(t)
= dx

ξ1(t, x)
= dU

η1(t, x)U
= dV

η2(t, x)V
(28)

whereξ0, ξ1, η1U, η2V are known coefficients of the infinitesimal operatorX which are
obtained as a linear combination of the operators (27).

It is known, [10, 11], that a full set of non-equivalent (non-conjugate) one-dimensional
subalgebras of theAG2(1.1) algebra is generated by the operators

X1 = Qλ X2 = Px X3 = Pt − αQλ

X4 = Pt + δGx X5 = D − αQλ X6 = Pt +5− αQλ

(29)

whereα ∈ R, δ = ±1. It should be noted that this is not a unique representation of such a set.
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Table 5. Other systems of the form (1).

Systems Restrictions Basic operators of MAI

1 λ1Ut = 1U + f (ω) λ2γ 6= 0 AE(1.n),Qγ = ∂U + γV ∂V
λ2Vt = 1V + Vg(ω) ω = V/ expγU

2 λ1Ut = 1U + f (ω) λ1γ 6= 0 AE(1.n)
0= 1V + Vg(ω) Q∞γ = T (t)(∂U + γV ∂V )

3 λ1Ut = 1U + β1U + f (ω) λ2β20γ 6= 0 AE(1.n)

λ2Vt = 1V + β20V logV + Vg(ω) β1/λ1 = β20/λ2 Qγ = exp

(
β1

λ1
t

)
(∂U + γV ∂V )

4 λ1Ut = 1U + β1U + f (ω) λ1β1γ 6= 0 AE(1.n)

0= 1V + Vg(ω) Qγ = exp

(
β1

λ1
t

)
(∂U + γV ∂V )

5 0= 1U + f (ω) λ2β20 6= 0 AE(1.n)

λ2Vt = 1V + β20V logV + Vg(ω) ω = V/ expγU Qγ = exp

(
β20

λ2
t

)
(∂U + γV ∂V )

6 λ1Ut = 1U + β1U + β10 logV λ1β20 6= λ2β1 AE(1.n),X∞β1
= Pβ1(t, x)∂U

λ2Vt = 1V + β2V + β20V logV λ2β10β20 6= 0 Qγ = exp

(
β20

λ2
t

)(
∂U +

λ1β20− λ2β1

λ2β10
V ∂V

)
7 λ1Ut = 1U + β1U + β10 logV λ1β20 = λ2β1 AE(1.n),X∞β1

λ2Vt = 1V + β2V + β20V logV λ2β10β20 6= 0 Qtγ = exp

(
β20

λ2
t

)(
t∂U +

λ1

β10
V ∂V

)
8 λ1Ut = 1U + β1U + f (V ) AE(1.n)

λ2Vt = 1V + g(V ) X∞β1

9 λ1Ut = 1U + β1U + f (αU − V ) α 6= 0 AE(1.n), Z∞ = exp

(
β1 − β2

λ1 − λ2
t

)
λ2Ut = 1V + β2V + g(αU − V ) ×R(x)(∂U + α∂V )

Solving the system (28) for the operatorsX1, . . . , X6, respectively, we obtain a set of
non-equivalent Lie ansätze for the functionsU andV :

X1: V λ1 = ρUλ2 ρ ∈ R
X2: U = ϕ1(t) V = ϕ2(t)

X3: U = ϕ1(x) exp(−αλ1t) V = ϕ2(x) exp(−αλ2t)

X4: U = exp
[

1
2λ1t

(
1
3t

2 − δx)]ϕ1(ω)

V = exp
[

1
2λ2t

(
1
3t

2 − δx)]ϕ2(ω) ω = 2x − δt2
X5: U = t−(2αλ1+1)/4ϕ1(ω) V = t−(2αλ2+1)/4ϕ2(ω) ω = x/√t

X6: U = (t2 + 1)−1/4 exp

[
−λ1

4

(
tx2

1 + t2
+ 4α arctant

)]
ϕ1(ω)

V = (t2 + 1)−1/4 exp

[
−λ2

4

(
tx2

1 + t2
+ 4α arctant

)]
ϕ2(ω) ω = x√

1 + t2
.

(30)

Using the ans̈atze (30), we can reduce the nonlinear system (7) to systems of ordinary
differential equations (ODEs). In contrast to the other ansätze, the one for the operatorX1

leads, however, to a system of partial differential equations

λ1Ut = Uxx + β1ρ
γ1U

λ2Vt = Vxx + β2ρ
γ1V.

(31)
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The reduced systems of ODEs for the other five ansätze are as follows:

λ1
dϕ1

dt
= β1ϕ

1−γ1λ2

1 ϕ
γ1λ1

2

λ2
dϕ2

dt
= β2ϕ

1+γ1λ1

2 ϕ
−γ1λ2

1

(32)

d2ϕ1

dx2
+ αλ2

1ϕ1 + β1ϕ
1−γ1λ2

1 ϕ
γ1λ1

2 = 0

d2ϕ2

dx2
+ αλ2

2ϕ2 + β2ϕ
1+γ1λ1

2 ϕ
−γ1λ2

1 = 0

(33)

4
d2ϕ1

dω2
+

1

4
δλ2

1ωϕ1 + β1ϕ
1−γ1λ2

1 ϕ
γ1λ1

2 = 0

4
d2ϕ2

dω2
+

1

4
δλ2

2ωϕ2 + β2ϕ
1+γ1λ1

2 ϕ
−γ1λ2

1 = 0

(34)

d2ϕ1

dω2
+

1

2
λ1ω

dϕ1

dω
+
λ1

4
(2αλ1 + 1)ϕ1 + β1ϕ

1−γ1λ2

1 ϕ
γ1λ1

2 = 0

d2ϕ2

dω2
+

1

2
λ2ω

dϕ2

dω
+
λ2

4
(2αλ2 + 1)ϕ2 + β2ϕ

1+γ1λ1

2 ϕ
−γ1λ2

1 = 0

(35)

d2ϕ1

dω2
+
λ2

1

4
(4α + ω2)ϕ1 + β1ϕ

1−γ1λ2

1 ϕ
γ1λ1

2 = 0

d2ϕ2

dω2
+
λ2

2

4
(4α + ω2)ϕ2 + β2ϕ

1+γ1λ1

2 ϕ
−γ1λ2

1 = 0

(36)

whereϕ1, ϕ2 are new unknown functions on one variable andγ1 = 4/(λ1− λ2).
Having exact solutions of these systems of ODEs and using the relevant ansätze from (30),

one obtains solutions of the nonlinear reaction–diffusion system (7). Note that the system (31)
obtained from (7) by the operatorX1 reduction, isa linear systemcoupled by the functional
conditionV λ1 = ρUλ2. This system can be reduced to an overdetermined one, made up of a
linear diffusion equation and a Hamilton–Jacobi-type equation of the form

V λ1 = ρUλ2

λ1Ut = Uxx + β1ρ
γ1U

λ1Ut = U2
x

U
+
λ1γ1

4λ2
(β1λ2 − β2λ1)ρ

γ1U.

(37)

It turns out that this system is integrated only in the caseκ ≡ β1λ
2
2−β2λ

2
1 = 0 and the relevant

general solution has the following form:

U = exp

(
λ1

(
c0 + c1x + c2

1t +
β1

λ2
1

ργ1t

))
V = ρ1/λ1 exp

(
λ2

(
c0 + c1x + c2

1t +
β2

λ2
2

ργ1t

)) (38)

whereρ, c0 andc1 are arbitrary constants.
The ODE system (32) can also be integrated (see below). Regarding the systems (33)–

(36), we can only say that they are not integrable. However, a successful way to find particular
solutions is to use the substitutionϕ1 = ρ(ω) exp(λ1W(ω)), ϕ2 = ρ(ω) exp(λ2W(ω)). It turns
out that this substitution reduces every system (33)–(36) to one with a similar structure to the
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equations obtained in [19], where a procedure for finding particular solutions of such ODEs
was suggested.

Since (29) is a full set of non-equivalent (non-conjugate) one-dimensional subalgebras of
AG2(1.1), any invariant solution of the nonlinear system (7) can be obtained using one of the
ans̈atze (30), whereϕ1, ϕ2 are the relevant solutions of (31)–(36). To achieve this it suffices to
apply additionally continuous transformations generated by the basic operators of the MAI (27).
The general form of such transformations can be found in the following way. Let us consider
an arbitrary solution(U0(t, x), V 0(t, x)) of the system (7). Then a successive application
of the above-mentioned transformations for this solution leads to a six-parameter family of
solutions (similar formulae for nonlinear Schrödinger equations were found in [16, 19]):

Unew= exp

[
λ1
pm2x2 + 2mε1x +m2ε2t + b0

4(d0 − pm2t)

]
× m

λ1
0 m

1/2

(d0 − pm2t)1/2
U0

(
m2t + d1

0

d0 − pm2t
,
mx +m2εt + d

d0 − pm2t

)
Vnew= exp

[
λ2
pm2x2 + 2mε1x +m2ε2t + b0

4(d0 − pm2t)

]
× m

λ2
0 m

1/2

(d0 − pm2t)1/2
V 0

(
m2t + d1

0

d0 − pm2t
,
mx +m2εt + d

d0 − pm2t

)
(39)

whered0 = 1− pd1
0, d = d1 + εd1

0, ε1 = ε + pd1, b0 = p(d1)2 + 2εd1 + ε2d1
0 andε, p,

m0 > 0,m > 0, d1
0, d1 are arbitrary parameters.

Interesting particular cases of the formula (39) are

Unew= U0(t, x + εt) exp
(

1
2λ1

(
εx + 1

2ε
2t
))

Vnew= V 0(t, x + εt) exp
(

1
2λ2

(
εx + 1

2ε
2t
)) (40)

and

Unew= t−1/2 exp

(−λ1x
2

4t

)
U0

(
−1

t
,
x

t

)
Vnew= t−1/2 exp

(−λ2x
2

4t

)
V 0

(
−1

t
,
x

t

)
.

(41)

Formula (40) is generated by the Galilei transformation and theε parameter can be thought of
as representing a velocity. Formula (41) can be obtained by the passage to the limitp→∞,
m→ 0,pm→ −1 (the other parameters being zero). Both formulae can be used to convert
time-independent (stationary) solutions of the nonlinear system (7) into time-dependent (non-
stationary) ones.

Remark 4. The formulae for the multiplication of solutions that are presented above for the
(1 + 1)-dimensional case can easily be generalized to the multidimensional case in which one
considers the system (24). In particular, formula (41) has the multidimensional analogue

Unew= t−n/2 exp

(−λ1|x|2
4t

)
U0

(
−1

t
,
x

t

)
Vnew= t−n/2 exp

(−λ2|x|2
4t

)
V 0

(
−1

t
,
x

t

) (42)

where|x|2 = x2
1 + · · · + x2

n.
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Formula (41) contains no parameters, so it is not an expression for the multiplication of
an exact solution into a family of solutions but a formula for the transfer of one solution into
another. It should be noted that a similar result for the linear diffusion equation was obtained
by Appell [20] and its analogues for nonlinear Schrödinger equations were constructed in
[16, 19].

Finally, let us present an example of the application of (41). The system of ODEs (32) is
easily integrated and its general solution leads to the following solutions of (7):

U0 = Aλ1

(
±λ1λ2

γ1κ

)1/4

(t0 ± t)β1λ2/γ1κ

V 0 = Aλ2

(
±λ1λ2

γ1κ

)1/4

(t0 ± t)β2λ1/γ1κ

(43)

if κ = β1λ
2
2 − β2λ

2
1 6= 0, and

U0 = Aλ1

(
λ2

1α

β1

)1/4

exp(λ1αt)

V 0 = Aλ2

(
λ2

1α

β1

)1/4

exp(λ2αt)

(44)

if κ = 0; the constantst0, A andα are arbitrary. Using formula (41), solutions (43) and (44)
are converted into solutions of the form:

Unew= Aλ1

(
±λ1λ2

γ1κ

)1/4

t−1/2

(
t0 ∓ 1

t

)β1λ2/γ1κ

exp

(
−λ1x

2

4t

)
Vnew= Aλ2

(
±λ1λ2

γ1κ

)1/4

t−1/2

(
t0 ∓ 1

t

)β2λ1/γ1κ

exp

(
−λ2x

2

4t

) (45)

and

Unew= Aλ1

(
λ2

1α

β1

)1/4

t−1/2 exp

(
−λ1

t

(
α + 1

4x
2
))

Vnew= Aλ2

(
λ2

1α

β1

)1/4

t−1/2 exp

(
−λ2

t

(
α + 1

4x
2
))
.

(46)

It is worth commenting on some of the properties of (46) and (45). Forβ1 > 0, we
requireα > 0 in (46) and the solution is identically zero att = 0 (providing an example
of a non-uniqueness property for the corresponding system of reaction–diffusion equations)
and decays ast → +∞ in the form of two independent Gaussians (corresponding to linear
diffusive behaviour). Forβ1 < 0, we requireα < 0, leading to solutions which blow up in
the rangex2 < −4α, but decay to zero elsewhere, ast → 0+. In (45), the lower signs are
needed forγ1κ < 0 and one has identically zero initial data (again implying non-uniqueness)
if β1λ2, β2λ1 > −γ1κ/2. For t0 < 0,U blows up ast → −1/t0 if β1 > 0 and extinguishes
if β1 < 0; similarly V blows up ifβ2 > 0 and extinguishes ifβ2 < 0. For t0 > 0, bothU
andV decay in a linear (Gaussian) fashion ast → +∞; in the (non-generic) borderline case
t0 = 0 the solutions remain bounded but the mass ofU tends to infinity ast → +∞ if β1 > 0
and to zero ifβ1 < 0, with that ofV having the corresponding dependence on the sign ofβ2.
This family of solutions is thus particularly interesting in that it provides explicit illustrations
of each of these asymptotic outcomes; in view of its very special symmetry properties it seems
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likely, however, that (7) has a non-generic status (within the class of systems (1) with power-
law nonlinearities) with respect to its asymptotic behaviour. Forγ1κ > 0 (which requires
λ2 < λ1 <

√
β1/β2 λ2 or λ1 < λ2 <

√
β2/β1 λ1), the upper signs are needed in (45) and

Gaussian behaviour ensues ast → +∞.
The solutions (45) and (46) have a similar character to thefundamental solutionof the

linear diffusion equation ((25) withn = 1). We note that in the case of a single nonlinear
reaction–diffusion equation

Ut = Uxx +C(U) (47)

there are no known exact solutions with similar structure.
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