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Abstract. A complete description of Lie symmetries is obtained for multidimensional semilinear
systems of two reaction—diffusion equations. Moreover, a variety of Lie’'sitaeasand exact
solutions of some particular reaction—diffusion systems, of a type that arises in mathematical
biology for example, are constructed.

1. Introduction
In the present paper we shall consider nonlinear reaction—diffusion systems of the form

MU =AU+ FU,V)
MNVi=AV+GWU,V)

1)

where F and G are arbitrary smooth function§] = U(t, x), V = V(¢, x) are unknown
functions ofn + 1 variables, x = (x1, ..., x,), A is the Laplacian and the subscripbn
functionsU andV denotes differentiation with respect to this variable.

The nonlinear system (1) generalizes many well known nonlinear second-order models and
is used to describe various processes in physics [1], chemistry [2] and biology [3]. Nowadays
systems of the form (1) are widely studied. There are many papers devoted to the investigation
of existence and unigueness problems, asymptotic behaviour of solutions and so on (see, e.g.,
[3, 4] and papers cited therein). On the other hand, to our knowledge there are only a few
papers devoted to the search for Lie symmetries and exact solutions of systems of the form (1)
(see [5-8)).

Ina particular case, reaction—diffusion systems that are invariant with respect to the Galilei
algebra and its extensions were described in [5, 8]. It was found that only systems of the form

MU, = AU +Uf (w) w=U"2y™
AV, = AV + Vg(w)

)
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where f andg are arbitrary smooth functions on the variableare invariant under the Galilei
algebraA G (1.n) with the following representation:

0 |
Pt=_ Pa= Juh:xaph_xbpa
ot 0x,
3 5 )
= MU— + 1V — G, =1P, — ix,0;.
Oy=M v Yy 5% O

It should be stressed that although the technique of the Lie method is well known (see, e.g.,
[9-12]), it is a non-trivial problem to provide a complete description of the Lie symmetries
of differential equations or systems containiagbitrary functions For instance, Lie had
calculated the maximal invariance algebra of the classitat 1)-dimensional diffusion
equation

Ui = Ui (4)

as far back as 1881 [13]. Nevertheless, the full classification of Lie symmetries for the single
nonlinear reaction—diffusion equation

U = [A(U)Ux]x + C(U) (5)

was only calculated in 1982 [14], i.e. 100 years later! Note that in the recently published paper
[15] the full classification of Lie symmetries of the nonlinear reaction—diffusion—convection
equation

U =[AWU) U] + BWU)Ux +C(U) (6)

whereA(U), B(U) andC (U) are arbitrary smooth functions, has been determined.

Having in mind acomplete descriptiorf the Lie symmetry of system (1), we now
summarize the main results of this paper.

In section 2, the classical Lie scheme is applied to find all possible Lie symmetries which
the system (1) can admit. The main results of this section are presented in tables 1-5. Note that
we present the full classification only for the cagse# A, with A, for example, non-vanishing.

It turns out that the caske; = X, is very special and we are going to devote to this case the
second part of this work.

In section 3, the(1 + 1)-dimensional reaction—diffusion system, preserving the Lie
symmetry of the linear diffusion equation, namely

MU = Uge + prU U2V 0172
hoVy = Vi + foV (U2 V) H a2

is considered in detail. All non-equivalent Lie &twe are presented, together with formulae
for the multiplication of solutions and examples of exact solutions.

()

2. Lie symmetries of system (1)

It is easily checked that the system (1) is invariant under the oper&tots, and P, (see

(3)) for arbitrary functionsF andG. The operator®, and J,;, form the well known Euclid
algebraAE(n). Its extension by the operatdt, we will denote as thed E(1.n) algebra.
Following [15], this algebra is called thevial Lie algebraof the system (1). Thus, we aim to

find all pairs of functiong F, G) that lead to extensions of the trivial Lie algebra for systems

of the form (1). Note that we consider onfpnlinear systems, particularly because linear
equations are amenable to numerous classical methods (the Fourier method, the method of
Laplace transformation and so on).
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Now let us formulate a theorem which gives complete information on the classical
symmetry of the system (1).

Theorem 1. All possible maximal algebras of invariance (MAI) of the system (1) for any fixed
pair of functionsF, G andi; # A, are presented in tables 1-5. Any other system of the form
(1) with non-trivial Lie symmetry is reduced by a local substitution to one of those given in
tables.

Proof of theorem 1. This proof is based on the classical Lie scheme (see, e.g., [9-12]) and
is very cumbersome because the system (1) contains two arbitrary functions of two variables.
Here we give only an outline of how the proof proceeds. According to the Lie approach, the
system (1) is considered as a manifold, S,)

S1=MmU —AU-FWU,V)=0 ®)
S, =1V, — AV —GWU,V)=0

in the space of the following variables:
tv-vas Vs Uls ‘/tlev"'9Un9Vls"'7 ‘/117Ull""?UIHZ?Vll?"'?Vnn

where subscripts,1. ., n to the functiond/ andV denote differentiation with respect to the
variablesxy, ..., x,.

System (1) is invariant under the transformations generated by the infinitesimal operator
X =%, x,U, V)3, +&(t,x, U, V), + 0" (0,5, U, V)oy + 0" (t,x, U, V)dy 9)

when the following invariance conditions are satisfied:

XS1=XMU — AU - F(U, V)| 50 = 0
11 11 S>=0
(10)
X S2= X2V, — AV — G(U, V)| 5o = 0.
11 11 S>=0

The operatolx is the second prolongation of the operaXari.e.
11

0 0 0 0 0

9
=X+pl—+p'—+pV —+p—+oV—+oV — (11
X PEgT TP gy TP g T Pa gy P Oa gy Fowgy— (L)

where the coefficients ando with relevant subscripts are calculated by well known formulae

(see, e.g., [12]) and summation is assumed from 1 tover the repeated indices, b.
Substituting (11) into (10), we can split this relation into separate parts for the derivatives

Uta‘/faU]J"'vUanls""Vn’Ulla"'vUnnvVllv"'avnn'

Finally, after the relevant calculations, we obtain the following system for the coefficients
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£0 &9 pU nV of the operatoiX:
850 _ 8%_0 B a%-O _

= = = a=1...,n
ax, U 9V
dEr  9&l dEL g
é = é = S + E =0 a,b:l,...,n a;ﬁb
oUu A% dx, 0Xxp
9&0 9&
i=2$ a=1,...,n
Jat 0x, (12)
82 U 9 a
2 1 =A§"—k1$ a=1,...,n
9x,0U ot
82 1% a a
2 il =A§“—A2€ a=1,...,n
9x,0V ot
nY = EYt, x)U +q*(t)V + Pz, x)
n" = E%(t,x)V +q*()U + P*(t, x);
anV anV
13
oY ) an¥ (13)
You T M0
an? anv 90 anY AF oF
P/ A Ny (L R WP L T L L
ot aU ot v U v (14)
anV an¥ &0 anV G G
PYRCL/A N NpeY (L ML i WL M LS
ot av ot U U v

whereE*(t, x), ¢*(t), PX(t, x), k = 1, 2 are arbitrary smooth functions.
One can see that the subsystem (12) is an overdetermined one and it is possible to construct
its general solution, namely:
£°=2A(1)
é”:cubxb+A(I)xu+ga(t) a,b=1,....n a#b
Y = =3I PAM) + 2.(Dx)U +r* (U +q*(0)V + Pz, x)
n" = =323 IxPAW) + g.()x,)V + 2OV + q*()U + P2(t, x)

(15)

whereA(t), g, (t),a =1, ..., n,r%(),q" (), PX(t, x),k = 1, 2 are arbitrary smooth functions,
cartcpe = 0,c4 € R, and the dots over the functions denote differentiation with respect to the
variabler. Taking into account (15), we can consider equations (13) and (14) as classification
equations to find the pairs ¢F, G) for which the system (1) has a non-trivial Lie symmetry.

It can be seen that there are three main cases which lead to essentially different types of
Lie symmetry of the system (1), namely:

(@) A1 # A2, A2 #O;
(b) Aar2 =0;
(€) A1 = Ap.

In the first case, it follows from (13) that' = ¢? = 0 and then the subsystem (14) is
non-coupled. Moreover, both equations of this subsystem have the same structure. In the
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second case, it follows again thgtandg? vanish. Without losing generality, we can assume

A1 = A # 0, A2, = 0 and then the second equation of (14) is simpler in structure than the
first one. The casg; = A, = 0 is not considered here because then the evolution system
degenerates into an elliptic system. In the third case, equations (13) are satisfied by arbitrary
functionsg® andg?, so that the subsystem (14) is coupled. This case will be considered in a
subsequent paper.

Case (a). This is the most general and interesting case. Taking into account (15), one sees
that the most non-trivial symmetry can occur when

E = 3IxPA(0) + gu()x, # 0. (16)

Substituting coefficients (15) into (14) and solving the system obtained using the restriction
(16), we find all possible extensions of the trivial Lie algebra, listed in table 1. Note that we
have shown only local non-equivalent systems. The corresponding local substitutions have the
form

U — crexpleat)U + c1o

17

V - ¢ eXF(C4[) V +coo

where the coefficients with subscripts are determined by the form of the system in question.
If the restriction (16) is not valid, i.e£ = 0, then (15) takes the form

£9 = 2411 +dy

Y = copxp + Arx, +d, a,b=1....n a#b

(18)
0" =riOU + P, x)
n' =r?mV+ P, x)
whereAs, do, d1, . .., d, are arbitrary parameters. Again one notes that the widest symmetry

occursinthe cas#; # 0. Inthis case all systems of the form (1) that are invariant under scaling
transformations with respect to the independent variables (of the foems?s, x! = ex,,
a=1,...,n,¢ € R)can be described. These results are summarized in table 3. Note that
two additional cases (numbers 6 and 12), that belong only to case (b), are also listed in table 3.
The set of local substitutions that reduce any system of the form (1) with the above-mentioned
symmetry to one of the cases of table 3 has the form

U — crexplest)U + C5|)C|2 +c7t + 10 (19)

V — coexpleat)V + c6|)c|2 + cgt + cop.

Finally, if A; = 0 then the trivial Lie algebra E (1.n) of the system (1) can be extended

only by operators of the form

X = P, x)dy X5° = P?(t, x)dy

20
I =TY0Udy 152 =T%*()Vay (20)

where T*(r), P*(t,x), k = 1,2 are some functions or constants, and by their linear
combinations. All possible functions have been found and the results are summarized in
tables 4 and 5. Again, additional cases (see numbers 3—-6 and 12, 13 in table 4 and numbers 2,
4 and 5 in table 5) that belong only to case (b) are also listed in tables 4 and 5. The set of local
substitutions that reduce any system of the form (1) with symmetry (20) to one of the cases of
tables 4 and 5 again has the form (19).
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Table 1. Galilei-invariant and pseudo-Galilean-invariant systems of the form (1) at 0,k =
12
Systems Restrictions Basic operators of MAI

1 MU =AU+Uf(w)
MV =AV +Veg(w)

2 U = AU+ BUo”
22V, = AV + BV

3 MU = AU + gU[U 2]
AV, = AV + BpV[U 2y ]

4 MU, =AU +U(BL+22fglogw)
A2V = AV + V(B2 + 33pologw)
5 MU =AU +U(B1+ Brologw)

22Ve = AV + V(B2 + Baolog w)

6 MU, = AU +U(BlogU + f(w))
AV = AV +V(aBlogV + g(w))
7 MU, = AU
+U(B1+ 11BlogU + Brologw)
AV, = AV
+V (B2 +r28logV + Baologw)
8 MU, = AU
+U(B1+ rBlogU + Brologw)
MV, = AV
+V (B2 + 128109V + Baologw)
9 MU, = AU
+U(B1 +11BlogU +12fologw)
MV, = AV
+V (B2 + A2BlogV +23B0logw)

w=U"2VM

a#0
BL#0

_ 4
= n(i1 —A2)
BL#0

Bo#0

B2o#0
Bror3 # Bao)?

p#0

w=U"2VyM

p#0

Briko = ProrZ — Baor?

B#0
Br023 # Poor?
Br0AZ — B20r2 # Brilz

BBo # 0

AE(l.n), Q, = 2MUdy + A2Vay
Gy =1tP; — %xan
AE(ln), Ox, Ga

2
D=2tP +x,P, — —Viy
Mo

AE(1n), Q;,G,

D=2tP, +x,P, — I,

M =12P +1x, Py — S1x1205 — t1,
AE(1n), 05,G,

Y = Sln +Bo(r1 — A2)1 0,

AE(1n), 0;,Gq
2 _ 2
Qﬁ = Qﬂ exp(ﬂzo)\':l-ﬂj'o)\'zt>

AA2
AE(Ln), Q; = exp(B1) 0,
Gu = eXp(B) Py — 3Bx, Q).
AE(Ln), 9, G,
0p = Bror2U0dy + B2or1Vay
AE(ln), Q. Gq
Qf = exp(p1)Qp

AE(ln), Q)\ ) ga

2
Y= exp(ﬁt);l,, + Bo(r1 — A2)1 Qs

Remark 1. In table 1, the following designation is introducek): = %n(UBU + Voy).

All possible systems that have non-trivial Lie symmetry have now been described in

case (a).

Case (b). This case is more cumbersome than case (a). Nevertheless, it is possible to make
use of the results of the investigation of case (a). It turns out thd ferO most of the pairs of
nonlinearitieg F, G) that lead to non-trivial Lie symmetries can be obtained from the relevant
cases of tables 3-5, if there one formally pus= 0. On the other hand, cases 6 and 12 in
table 3, 3-6 and 12-13 in table 4, and 2, 4 and 5 in table 5 arise only xgher0.

When the restriction (16) holds, the full classification gives a set of new nonlinearities

(F, G) which lead to non-trivial Lie symmetries. We have found 16 relevant cases, which are
listed in table 2. Note that only some of them can be obtained formally from the corresponding
cases in table 1.
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The set of local substitutions that reduce any system of the form (1), with Lie operator(s)
satisfying (16), to one of the cases of table 2 has the form

U — crexplest)U +cyo
3 1)
V — oV +cat + cst|x|° + c20.

The sketch of the proof is now completed. O

Remark 2. Intables 1-5f (w), g(w) andT (¢) are arbitrary smooth functions, whilg (z, x),
Po(t, x), Pg(t,x), Pg,(t, x), Po(t, x), R(x) and Ro(x) are arbitrary solutions of the linear
equations

P = AP
MP, = AP
AMP, = AP+ 1P

O=AP+ 8P (22)
0=AP
A — A
AR — 261 1,32R
AL — A2
ARy=0

respectively.

Remark 3. A number of the cases that are noted as special with respect to their symmetry
properties also arise in applications. Power-law nonlinearities (such as those arising in
table 1, cases 2 and 3 and table 2, cases 2 and 3) are frequently adopted in chemical
reaction modelling, for example, while combinations of exponentials and power laws (akin
to those in table 2, cases 5 and 9 and table 3, case 9) arise when the effects of variations
in temperature on reaction rates are accounted for, such as in the modelling of combustion
processes.

It is worth commenting on systems and Lie algebras listed in table 1. It turns out that,
in contrast to the scalar case, there are many Galilei-invariant systems of the form (1) (see
case 1 in table 1). Cases 2 and 3 of table 1 are natural continuations of case 1, because
the extended Galilei algebraG,(1.n) and the generalized Galilei algebrsG,(1.n) are
known to be standard extensions of the classical Galilei algdlefél.n) (for details see
[12,16]). Moreover, the system (1) is invariant with respect toAlte,(1.n) algebra only
in the case of a particular power nonlinearity that depends on the values of andn.
Cases 4 and 5 represent two new extensions of the Galilean algebra by the opeasathd,
respectively. Both extensions are different from th@,(1.n) algebra because they contain
the commutative relations”], Y] = Bo(A1—A2) Q; and [P;, Q] = (B2oh2 — B10r3) Qs /A1k2,
respectively.

In contrast to cases 1-5, case 6 has a direct analogue among single nonlinear reaction—
diffusion equations. Indeed, according to [14],

U, = AU + BoU logU Bo#0
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Table 2. Galilei-invariant and pseudo-Galilean-invariant systems of the form (1)&ti;, #
0,12 =0.
Systems Restrictions Basic operators of MAI
1 AU, =AU+UFV) AE(ln), Q = Udy
0=AV +g(V) G{lth(l_%)"-xaQ
2 AU =AU AE(Ln), Q,G,
0=AV +g(V) X = Pi(t, x)dy
3 AU, =AU B2y #0 AE(ln), Q, Gq, X§°
2
0= AV +pv¥ y# -1 Dy =2tP+x,P, — —VPy
Y
[y = 12P, +1tx, P,
2
—(3Mx?+ 3nnUdy — =tVay
Y
4 AU =AU +pUVY yB1P2 # 0 AE(Ln), Q,G,
0= AV +pv¥ Dy, Ty
5 AU = AU + U exp(y V) yB1#0 AE(ln), Q, G,
2
0= AV +Brexp(yV) Dy =2tP, +x,P, — — Py
Y
My =12P +1tx, P,
2
—Gax2+ innUay — ~1av
Y
6 AU =AU B2y #0 AE(Ln), Q,G,
0= AV +BrexpyV) D3, Tz, X§°
7 AU =AU +yUlogV y#0 AE(1n), 0, G,
0=AV +pBV Yw:<y/TMd0U&M%TMV%
8 AU, =AU+Uf(w) a#0 AE(Ln), Qy = Udy — ady
0=AV +g(w) w=U%xXpV  GY =1P; — 35,00
9 AU = AU + B Ut expV afy #0 AE(Ln), Qq, G%
0= AV + BU* expV Do = 2tP; +x, P, — 20y
10 AU, =AU a2 #0 AE(Ln), Qu, G% ata = az/B2
0= AV +azlogU + gV X3 = Ppy(t, x)y
11 AU, =AU az#0 AE(Ln), X§ = Po(t, x)dy
O=AV+O[2|OQU Qesp:UaU_glxlzaV
X a2
dwzmrgm4gw+§ﬁm)
D =2tP +x,P, +2Vdy
Megp = 1D — 2P, — (3alx12+ Sn)Udy
Lo P I ZL
+| — + — d
<1&n+b(u|) 4\M v
12 AU = AU +yUlogU + Uf(V) y£0 AEunxgzem(%QU%
_ _ 14 1
0= AV +g(V) Gu = exp( L) P = 3yx.Q
13 AU, = AU +yUlogU y#0 AE(Ln), Q,G,
0=AV +pV 1° =TV, X5 = Ppy(t, )y
14 AU =AU +U(ylogU + prologV)  yPio#0 AE(Ln), Q, G,

0= AV +85V

y* = exp(%t) Y
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Table 2. Continued.

Systems Restrictions Basic operators of MAI

15 AU, =AU+U(ylogU + f(@)  ya#0 AE(Ln), Q% = exp(%t) (Udy — ady)
0= AV +g(w) w=U"expV G =exp<%t) P, — Syx,0

16 AU, = AU +yU logU azBoy #0 AE(1.n), XE;
0= AV +azlogU + oV Q“,ggatazg

is invariant with respect to th&éG(1.n) algebra with basic operators

d ad
= Pa = Ja = aP - Pa
ot o, b= Xalh T A (23)

Q = exp(Bot)Udy G. = eXp(Bot) Ps — 3 ox, Q.

Here we call this algebra the pseudo-Galilean algebra. Note thatAdhig.n) algebra is
different from the Galilei algebra because it contains the commutative relafiar@] = 80 Q

and [P, G,] = BoG.. Finally, cases 7-9 of table 1 are natural continuations of case 6, because
they represent three new extensions of the pseudo-Galilean algebra.

Py

3. Lie ansatze and solutions of the nonlinear reaction—diffusion system (7)

Consider the nonlinear reaction—diffusion system (see table 1, case 3)

MU, = AU + lglUl—)\z%l Vv

KoV = AV + BV ihamy o (24)

wherey, = 4/(n(A1 — A2)), A1 # Ap. It preserves thedG,(1.n) symmetry of the linear
diffusion system

MU, = AU
(25)
AV, = AV.

It should be stressed that this is a non-trivial result since there is no scalar nonlinear
generalization (5) of the linear equation (4) which preserved@s(1.1) symmetry.

In this section we shall deal with th& + 1)-dimensional version of the system (24), i.e.
(7). This system with.; — A, < 0 can be considered as a limiting case of a model used to
describe a biological pattern arisinghigdra[17, 18], namely

)"le = Uxx + lglU(Uutzvia1 - dl)

(26)
)"ZVt = Vxx + IBZV(UOMV_OZ3 - dZ)

where the coefficients are some non-negative parameters. Note that in the, tase—
ag/az = Ap/A1, the system (26) is invariant with respect to the Galilei algebta1.n) (see
table 1, case 1). In the case of the additional restrictiins d> = 0, ap = a4, @3 = a3, it
has theAG1(1.n) symmetry (see table 1, case 2).
Thus, it seems reasonable to construct Lieataes and to seek exact solutions of the
nonlinear system (7). With this in mind, consider its Lie symmetry generated by the basic
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Table 3. Scale-invariant systems of the form (1).

Systems Restrictions Basic operators of MAI
1 MU =AU+ U f(w) ag#0 AE(Ln), D1 = 219, + x,04
2
AV, = AV + VU %0g(w) w=U7"V +—(Udy +yVay)
oo
2 MU =AU+ Ut aof1fa # 0 AE(ln), D1
A2V, = AV + BUY % X$° = Po(t, x)dy
3 MU = AU + Uty oo fr # 0 AE(Ln)
2
A2V, = AV + U %oyl ooh1 # QiAo D10 =213 + x40, + —Udy
ag
Qa = OlanU +OtoVav
4 MU, = AU a1B2 #0 AE(1.n), D1o, Xgo
A
JaVi = AV + U0 w0 # 0L —2 Qup = —Udy +aoViy,
1
5 U =AU +p U0 A2p1# 0 AE(Ln), Do
rVi = AV g #0; 1 I=Vay, X
6 AU = AU + Ut ApBL#0 AE(1.n), D1g, I® = T(#)Vay,
0=AV ap=0;1 Xgo = Po(t, x)dy
72U, = AU + exp(—yol) f (w) v #0 AE(Ln), Dy = 219, + x40,
Vv 2
AV, = AV +V exp(—yol)g(w) w=—- += @y +yVy)
i K(—yoU)g expy U) o 4
8  MU; = AU + prexp(—yoU) voB1B2 # 0 AE(1.n), D2
A2V = AV + Brexp((y — yo)U) X5
9 MU =AU+ VA exp(—yU) aryof1 # 0 AE(1.n), Q) = ady +yoVoy
2
2Vi = AV + BV exp(—yoU) Dog = 213, + x40, + —dy
70
10 MU, =AU rM#0 AE(Ln), Dao, X5°
AoVi = AV + Brexp(—yoU) vof2 # 0 Oy = =03y +yoViy
11 MU = AU + Brexp(—yoU) A2 #0 AE((1.n), Dy
AV, = AV vof1 # 0 I=Vay, X5°
12 MU, = AU + prexp(—yoU) ApPivo #0 AE(1.n), Do, I® =T (t)Vay
0= AV Xg° = Polt, x)dy
13 MU, = AU +exp(—yolU) f(w) ryo # 0, AE(1.n), D3 = 2t3; + x40,
2
A2V = AV +exp(—yoU)g(w) wo=yU-V +—(dy +yay)
Yo
14 MU =AU +prexpiyiV —wlU)  yn#0 AE(Ln), Do
AVe = AV + rexpyrV — yoU) rMpB2#0 077 = Ro(x)(y10u + y0dv)
15 MU, =AU +pB 1B #0 AE(Ln), Q%
2
iV = AV +BexpniV —nlU)  yniy2 #0 Desp = 2t0; + %404 — Zav
2 Aalx|?
B1 (H 2lx| ><3U+@3v>
Al — A2 2n Y1
16 MU, = AU + prexp(—yU) voP1B2 # 0 AE(Ln), X5°
2
A2V = AV +BU Desp = 2t0; + x40, + —dy
Yo
2
+2(V _ Belx )3\/
2yon
operators

P, =29, P, =,
Gy =1P, — 5x0;

05 = MU0y +22Vay
D =2tP,+xP, — 2(Udy + Vdy)
I =12P, +1x, Py — 31x12Q5 — 3t (Udy + V).

(27)



Lie symmetries of nonlinear reaction—diffusion systems: | 277

Table 4. Other systems of the form (1).

Systems Restrictions Basic operators of MAI
1 MU = AU +Uf () y #0; h2/A1 AE(Ln)
MV, =AV +Vg(w) w=U"V Qy =Udy +yVoy
2 MU = AU + U f(w) + p1oU logU A1/B10 = A2/B20 AE(Ln)
A2Vi = AV + Vg(w) + B2oV log V X2B20 # 0 Q= eXp(%t) (Udy +yVav)
1
3 MU = AU + U f(w) + B10U logU AP0 #0 AE(1ln), Qy
0=AV+Vg(w)
4 MU = AU + B1U + B1oU logU ApB2 £Z0 AE(1n), Q,
0= AV +BU" y#£0;1 X3 = Po(t, x)dy
5 MU, = AU + B1U + B1oU logU A1BioB21 # 0 AE(1n),Qy,y =1
0= AV + B2V + B1U XE;:PﬂZ(I,x)av
6 MUr = AU + p1U + p1oU logU *B1o#0 AE(1n),Qy,y =1
0=AV X8°,I°°=T(t)V3V
7 MU =AU+ f(U) A2B20# 0 AE(Ln), Q% = eXp(%t) Vay
2
AV, = AV +Vg(U) + BV logV
8 MU = AU + B1U + B1oU logU AMpB1o# 0 AE(1l.n)
A2Vi = AV + BV + B0V log V A2f20 # 0 @=em<%$)Uw£f
1
9 AU = AU + LU + BroU log U AA2B10 £ O AE(Ln), QY 1 = Vay
AV = AV X5° = Pa(t, x)dy
10 MU, = AU + f(U) A #0 AE(Ln), I
A2V, = AV + Vg(U)
11 MU =AU+ f(U) A2 #0 AE(.n), I, Xgo
MV, = AV
12 MU =AU+ f(U) M #0 AEA.n), I® =T(t)Vay
0=AV X8°:Po(t,x)8\/,
13 U, = AU + f(U) M#O AE(Ln), I®

0= AV +VgU)

According to the general procedure it is necessary to solve the Lagrange system

d  dx  du  dV
E0(t)  EL(t,x)  m(t,x)U  ma(t,x)V

(28)

where&£°, &1, n,U, 1,V are known coefficients of the infinitesimal operaforwhich are
obtained as a linear combination of the operators (27).

It is known, [10, 11], that a full set of non-equivalent (non-conjugate) one-dimensional
subalgebras of thaG,(1.1) algebra is generated by the operators

X1= 0 Xo =P, X3=P — a0,

(29)
X4= P, +8G, Xs=D—aQ; Xe= P, +11 —aQ;

wherex € R, § = £1. It should be noted that this is not a unique representation of such a set.
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Table 5. Other systems of the form (1).

Systems Restrictions Basic operators of MAI
1 MU =AU+ f(w) A2y #0 AE(Ln), Q, = dy +yViy
AV =AV+Vg(w) w=V/expyU
2 MU =AU+ f(w) Ay #0 AE(1.n)
0=AV +Vg(w) Oy =T®) @y +yViy)
3 MU =AU+BU+ f(w) A2p20y # 0 AE(1.n)
MV = AV +BVIogV +Vg(w) p1/r1=Po/r2 Q) :exp(%t) @y +yVay)
4 MU =AU+BU+ f(o) Ay #0 AE(Ln)
0=AV+Vg(w) Q, :exp(%t) 0y +yVoy)
1
5 0=AU+f(w) A2f20 # 0O AE(1.n)

A2V = AV + BV IogV +Vg(w) w=V/expyU Q, = exp(%t) (g +yVay)
2

6 MU =AU +pU + prologV A1B20 # X2p1 AE(ln), Xg = Pp, (t,x)dy

A —A
JaVi= AV + oV +PaoViogV  dofrofo#0 Q= exp(@r) (au " Mvav)
A2 A2B10
7 MU, = AU + BLU + frolog V MBo=hofr  AE(Lm), X

A
A2V, = AV +BoV + BV IogV  AzB10B20 % 0 Q, :exp(%t) <tau+ﬂ—lvav>
2 10

8 MU =AU+BU+ f(V) AE(L.n)
AoV, = AV +g(V) X5
9 MU =AU+BU+f@U—-V) a0 AE(Ln), Z%° = exp(f1 - fzz)
1— A2
AU, = AV + BV + g(aU — V) X R(x)(3y + ady)
Solving the system (28) for the operatofs, ..., Xg, respectively, we obtain a set of
non-equivalent Lie arédze for the function®/ andV:
X;: VM =pU peR
X2t U=p() V = @a(t)
X3: U = p1(x) exp(—aist) V = pa(x) exp(—arat)
Xa: U =exp[3r1t(31% — 6x)|or(w)
V= exp{%kgt(%tz — (Sx)](pg(a)) w = 2x — 812 (30)
Xs: U =1 @) V=D i@ w=x/Vi
Xe: U= @t?+1) Yexp _haf + 4o arctary ()
- U= s \1+22 &
A2 tx2 X
V=(?+1) Yiexp - = + 4o arctary = )
@+ Vexp -7 T o o=

Using the anatze (30), we can reduce the nonlinear system (7) to systems of ordinary
differential equations (ODEs). In contrast to the otherdtres, the one for the operatdh
leads, however, to a system of partial differential equations

rMU; = Uxx + ,3110le

(31)
AV =V, + IBZpylv-
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The reduced systems of ODEs for the other fiveataesare as follows:

)\‘1% = By 1 virz yida

%2
& (32)
2 l A =ik

)‘2?—/8 1 1(pll/12

2
GG 1 032y + prgt g = 0
a2 (33)

— P2 v aiBpo+ gy ey = 0

dx?2

PRy 1
4d (pzl + 48)\.16()(pl + ﬂl(pl VlAZ(le)tl = 0

For 1 (34)
4 d ¢22 + 45)"260(;02 + 132(;02 Vl}\l(pI}/l)LZ = 0
Pp; 1. d

o+ St + T Qg + Dy + prgh g = 0
P 1 d (35)

— 2 =22+ _(zouxz + Dgp + ok T2 = 0

dw? 2 dow
d2

St M L 4o+ 0P)g1 + prof iR =0

y (36)
dg,

T + 2(40( + %), + ﬂzq)lﬂ/ﬂlw nre _ g
whereg1, ¢, are new unknown functions on one variable aqnd= 4/(A1 — A2).

Having exact solutions of these systems of ODEs and using the relevatzafrem (30),
one obtains solutions of the nonlinear reaction—diffusion system (7). Note that the system (31)
obtained from (7) by the operataf; reduction, isa linear systentoupled by the functional
conditionV*t = pU*2. This system can be reduced to an overdetermined one, made up of a
linear diffusion equation and a Hamilton—Jacobi-type equation of the form

A1 — pU)\.z
MU = U, + ﬂlple (37)
Uf A1y,
rU; = T + L(,31)»2 — Bor)p"U.

It turns out that this system is integrated only in the oaseﬁlkg — Bo2? = 0 and the relevant
general solution has the following form:

U= eXp<A1(co +cx + clt + f p”t))
1

V = pth exp(kz (co +ex i+ %p”t))

2

(38)

wherep, co andc; are arbitrary constants.

The ODE system (32) can also be integrated (see below). Regarding the systems (33)—
(36), we can only say that they are not integrable. However, a successful way to find particular
solutions is to use the substitution = p (w) expriW (w)), g2 = p(w) exp(rW(w)). Itturns
out that this substitution reduces every system (33)—(36) to one with a similar structure to the
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equations obtained in [19], where a procedure for finding particular solutions of such ODEs
was suggested.

Since (29) is a full set of hon-equivalent (non-conjugate) one-dimensional subalgebras of
AG»(1.1), any invariant solution of the nonlinear system (7) can be obtained using one of the
ansitze (30), where, ¢, are the relevant solutions of (31)—(36). To achieve this it suffices to
apply additionally continuous transformations generated by the basic operators of the MAI (27).
The general form of such transformations can be found in the following way. Let us consider
an arbitrary solutionU°(z, x), VO(z, x)) of the system (7). Then a successive application
of the above-mentioned transformations for this solution leads to a six-parameter family of
solutions (similar formulae for nonlinear Sdainger equations were found in [16, 19]):

pm?x? + 2melx + m2e?t + by
4(do — pm?t) }
mélml/2 0 m?t + d& mx +m2et +d
" (do — pm?1)172 <do — pm?t’  do— pm?* >
pm?x? + 2melx + m2e%t + by
4(do — pm?t) }
mé\,zml/2 0 m2t + d& mx +m?st +d
. (do — pm?t)Y/2 < )

U new — eXp|:)\l

(39)

View = exp[/\z

do — pmzt ’ do — pmzt

wheredy = 1 — pd&, d=d' + 80%, el = e+ pdt, by = p(dY)? + 2ed* + 82d& ande, p,
mo > 0,m > 0,d}, d* are arbitrary parameters.
Interesting particular cases of the formula (39) are

Unew= U°(t, x +et) exp(3r1(ex + 36%))

Voew = VO(I, x +&t) exp(%)nz(sx + %SZI))

—h1x? 1
Unew = [71/2 eXp<4—ltx) UO(—;, ;)
(41)

—Apx? 1 x
View =t Y2 exp| —=— VO -, = .
new & tt

Formula (40) is generated by the Galilei transformation and frerameter can be thought of

as representing a velocity. Formula (41) can be obtained by the passage to the-fimib,

m — 0, pm — —1 (the other parameters being zero). Both formulae can be used to convert
time-independent (stationary) solutions of the nonlinear system (7) into time-dependent (non-
stationary) ones.

(40)

and

Remark 4. The formulae for the multiplication of solutions that are presented above for the
(1 + D-dimensional case can easily be generalized to the multidimensional case in which one
considers the system (24). In particular, formula (41) has the multidimensional analogue

—Aalx|? 1
Unew= "2 exp(%) Uo(_? ;)
(42)

_ —)\.2|X|2 1 x
Voew=t "2 exp| ——— |v°(-=, =
new p< 4t 1t

where|x|2 = xZ + ... +x2.
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Formula (41) contains no parameters, so it is not an expression for the multiplication of
an exact solution into a family of solutions but a formula for the transfer of one solution into
another. It should be noted that a similar result for the linear diffusion equation was obtained
by Appell [20] and its analogues for nonlinear Siatinger equations were constructed in
[16, 19].

Finally, let us present an example of the application of (41). The system of ODEs (32) is
easily integrated and its general solution leads to the following solutions of (7):

1/4
U° = AM (i—’\m) (10 + 1)Phe/nx
Vik

43)
1/4 (
VO = A* <i—k1’\2> (1 = 1)fPh/nx

V1K
if «k = ,31)\.% — /32)& # O, and

}"2 1/4
U° = Ah(ﬁﬁ‘) exp(riat)
1
) (44)

1/4
VO = A% <ﬁi‘> exp(roat)
1

if « = 0; the constantg), A anda are arbitrary. Using formula (41), solutions (43) and (44)
are converted into solutions of the form:

1/4 Birz/viK 2
AA 1 A
Unew= A (:tl—z) t_l/z(to T ;) exp(— Ll )

Y1k 4¢
N Ao 1/4 12 1 Bar1/ vk )\sz (45)
View= A"?| £—— t to F — exp| —
Y1K t 4¢
and
A A
Unew = A“(ﬂ%‘) Y2 exlo<—71(a + %x2)>
(46)

A2\ V4 A2
VneszM(IBL) t 1/Zexp(—T( +%x2)>.

1

It is worth commenting on some of the properties of (46) and (45). gros 0O, we
requiree > 0 in (46) and the solution is identically zero rat= 0 (providing an example
of a non-uniqueness property for the corresponding system of reaction—diffusion equations)
and decays as — +oo in the form of two independent Gaussians (corresponding to linear
diffusive behaviour). FoB; < 0, we requirex < 0, leading to solutions which blow up in
the rangex? < —4a, but decay to zero elsewhere, ras> 0*. In (45), the lower signs are
needed fory.k < 0 and one has identically zero initial data (again implying non-uniqueness)
if Bido, Bor1 > —y1k/2. Fortg < 0, U blows up ag — —1/1y if g1 > 0 and extinguishes
if B1 < O; similarly V blows up if 82 > 0 and extinguishes i, < 0. Forfy > 0, bothU
andV decay in a linear (Gaussian) fashionras- +oo; in the (non-generic) borderline case
to = 0 the solutions remain bounded but the masE #énds to infinity ag — +oo if 81 > 0
and to zero if8; < 0, with that ofV having the corresponding dependence on the sigh.of
This family of solutions is thus particularly interesting in that it provides explicit illustrations
of each of these asymptotic outcomes; in view of its very special symmetry properties it seems
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likely, however, that (7) has a non-generic status (within the class of systems (1) with power-
law nonlinearities) with respect to its asymptotic behaviour. far > 0 (which requires

A2 < A1 < /Bi/B2X2 Or A1 < A2 < 4/B2/B1 A1), the upper signs are needed in (45) and
Gaussian behaviour ensues as +oo.

The solutions (45) and (46) have a similar character tdtiheamental solutiomf the
linear diffusion equation ((25) with = 1). We note that in the case of a single nonlinear
reaction—diffusion equation

U =U, +CU) (47)

there are no known exact solutions with similar structure.
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